 
- DSA 使用 C 教程
- 使用 C 的 DSA - 主页
- 使用 C 语言的 DSA - 概述
- 使用 C 语言的 DSA - 环境
- 使用 C 算法的 DSA
- 使用 C 的 DSA - 概念
- 使用 C 数组的 DSA
- 使用 C 链表的 DSA
- 使用 C 的 DSA - 双向链表
- 使用 C 的 DSA - 循环链表
- 使用 C 的 DSA - 堆栈内存溢出
- 使用 C 的 DSA - 解析表达式
- 使用 C 队列的 DSA
- 使用 C 的 DSA - 优先级队列
- 使用 C 树的 DSA
- 使用 C 哈希表的 DSA
- 使用 C 堆的 DSA
- 使用 C - Graph 的 DSA
- 使用 C 搜索技术的 DSA
- 使用 C 排序技术的 DSA
- 使用 C 的 DSA - 递归
- 使用 C 语言的 DSA 有用资源
- 使用 C 的 DSA - 快速指南
- 使用 C 的 DSA - 有用资源
- 使用 C 的 DSA - 讨论
使用 C 树的 DSA
概述
树表示由边连接的节点。我们将具体讨论二叉树或二叉搜索树。
二叉树是一种用于数据存储目的的特殊数据结构。二叉树有一个特殊条件,即每个节点最多可以有两个子节点。二叉树兼具有序数组和链表的优点,因为搜索与排序数组一样快,插入或删除操作与链表一样快。
 
条款
以下是与树有关的重要术语。
- 路径- 路径是指沿树边缘的节点序列。 
- 根- 树顶部的节点称为根。每棵树只有一个根,并且从根节点到任意节点只有一条路径。 
- 父节点- 除根节点外的任何节点都有一条向上的边到称为父节点的节点。 
- 子节点- 给定节点下方通过其边缘向下连接的节点称为其子节点。 
- 叶- 没有任何子节点的节点称为叶节点。 
- 子树- 子树代表节点的后代。 
- 访问- 访问是指当控制在节点上时检查节点的值。 
- 遍历- 遍历意味着按特定顺序穿过节点。 
- Levels - 节点的级别代表节点的生成。如果根节点位于级别 0,则其下一个子节点位于级别 1,其孙节点位于级别 2,依此类推。 
- 键- 键表示节点的值,基于该值对节点执行搜索操作。 
二叉搜索树表现出一种特殊的Behave。节点的左子节点的值必须小于其父节点的值,而节点的右子节点的值必须大于其父节点的值。
二叉搜索树表示
 
我们将使用节点对象并通过引用连接它们来实现树。
基本操作
以下是树的基本主要操作。
- 搜索- 搜索树中的元素。 
- 插入- 在树中插入一个元素。 
- 先序遍历- 以先序方式遍历树。 
- 中序遍历- 以中序方式遍历树。 
- 后序遍历- 以后序方式遍历树。 
节点
定义一个具有一些数据的节点,引用其左子节点和右子节点。
struct node {
   int data;   
   struct node *leftChild;
   struct node *rightChild;
};
搜索操作
每当要搜索元素时。从根节点开始搜索,如果数据小于键值,则在左子树中搜索元素,否则在右子树中搜索元素。每个节点遵循相同的算法。
struct node* search(int data){
   struct node *current = root;
   printf("Visiting elements: ");
   while(current->data != data){
      if(current != NULL)
         printf("%d ",current->data); 
         //go to left tree
         if(current->data > data){
            current = current->leftChild;
         }//else go to right tree
         else{               
            current = current->rightChild;
         }
         //not found
         if(current == NULL){
            return NULL;
         }
      }
   return current;
}
插入操作
每当要插入元素时。首先找到它的正确位置。从根节点开始查找,如果数据小于key值,则在左子树中查找空位置并插入数据。否则在右子树中搜索空位置并插入数据。
void insert(int data){
   struct node *tempNode = (struct node*) malloc(sizeof(struct node));
   struct node *current;
   struct node *parent;
   tempNode->data = data;
   tempNode->leftChild = NULL;
   tempNode->rightChild = NULL;
   //if tree is empty
   if(root == NULL){
      root = tempNode;
   } else {
      current = root;
      parent = NULL;
      while(1){                
         parent = current;
         //go to left of the tree
         if(data < parent->data){
            current = current->leftChild;                
            //insert to the left
            if(current == NULL){
               parent->leftChild = tempNode;
               return;
            }
         }//go to right of the tree
         else{
            current = current->rightChild;
            //insert to the right
            if(current == NULL){
               parent->rightChild = tempNode;
               return;
            }
         }
      }
   }
}        
预序遍历
这是一个简单的三步过程。
- 访问根节点 
- 遍历左子树 
- 遍历右子树 
void preOrder(struct node* root){
   if(root!=NULL){
      printf("%d ",root->data);
      preOrder(root->leftChild);
      preOrder(root->rightChild);
   }
}
中序遍历
这是一个简单的三步过程。
- 遍历左子树 
- 访问根节点 
- 遍历右子树 
void inOrder(struct node* root){
   if(root!=NULL){
      inOrder(root->leftChild);
      printf("%d ",root->data);          
      inOrder(root->rightChild);
   }
}
后序遍历
这是一个简单的三步过程。
- 遍历左子树 
- 遍历右子树 
- 访问根节点 
void postOrder(struct node* root){
   if(root!=NULL){            
      postOrder(root->leftChild);
      postOrder(root->rightChild);
      printf("%d ",root->data);
   }
}
例子
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
struct node {
   int data;   
   struct node *leftChild;
   struct node *rightChild;
};
struct node *root = NULL;
void insert(int data){
   struct node *tempNode = (struct node*) malloc(sizeof(struct node));
   struct node *current;
   struct node *parent;
   tempNode->data = data;
   tempNode->leftChild = NULL;
   tempNode->rightChild = NULL;
   //if tree is empty
   if(root == NULL){
      root = tempNode;
   } else {
      current = root;
      parent = NULL;
      while(1){                
         parent = current;
         //go to left of the tree
         if(data < parent->data){
            current = current->leftChild;                
            //insert to the left
            if(current == NULL){
               parent->leftChild = tempNode;
               return;
            }
         }//go to right of the tree
         else{
            current = current->rightChild;
            //insert to the right
            if(current == NULL){
               parent->rightChild = tempNode;
               return;
            }
         }
      }       
   }
}
struct node* search(int data){
   struct node *current = root;
   printf("Visiting elements: ");
   while(current->data != data){
      if(current != NULL)
         printf("%d ",current->data); 
         //go to left tree
         if(current->data > data){
            current = current->leftChild;
         }//else go to right tree
         else{                
            current = current->rightChild;
         }
         //not found
         if(current == NULL){
            return NULL;
         }
      }
   return current;
}
void preOrder(struct node* root){
   if(root!=NULL){
      printf("%d ",root->data);
      preOrder(root->leftChild);
      preOrder(root->rightChild);
   }
}
void inOrder(struct node* root){
   if(root!=NULL){
      inOrder(root->leftChild);
      printf("%d ",root->data);          
      inOrder(root->rightChild);
   }
}
void postOrder(struct node* root){
   if(root!=NULL){            
      postOrder(root->leftChild);
      postOrder(root->rightChild);
      printf("%d ",root->data);
   }
}
void traverse(int traversalType){
   switch(traversalType){
      case 1:
         printf("\nPreorder traversal: ");
         preOrder(root);
         break;
      case 2:
         printf("\nInorder traversal: ");
         inOrder(root);
         break;
      case 3:
         printf("\nPostorder traversal: ");
         postOrder(root);
         break;
   }            
}  
int main()
{
   /*                     11               //Level 0
   */
   insert(11);
   /*                     11               //Level 0
   *                      |
   *                      |---20           //Level 1
   */
   insert(20);
   /*                     11               //Level 0
   *                      |
   *                  3---|---20           //Level 1
   */
   insert(3);        
   /*                     11               //Level 0
   *                      |
   *                  3---|---20           //Level 1
   *                           |
   *                           |--42       //Level 2
   */
   insert(42);
   /*                     11               //Level 0
   *                      |
   *                  3---|---20           //Level 1
   *                           |
   *                           |--42       //Level 2
   *                               |
   *                               |--54   //Level 3
   */
   insert(54);
   /*                     11               //Level 0
   *                      |
   *                  3---|---20           //Level 1
   *                           |
   *                       16--|--42       //Level 2
   *                               |
   *                               |--54   //Level 3
   */
   insert(16);
   /*                     11               //Level 0
   *                      |
   *                  3---|---20           //Level 1
   *                           |
   *                       16--|--42       //Level 2
   *                               |
   *                           32--|--54   //Level 3
   */
   insert(32);
   /*                     11               //Level 0
   *                      |
   *                  3---|---20           //Level 1
   *                  |        |
   *                  |--9 16--|--42       //Level 2
   *                               |
   *                           32--|--54   //Level 3
   */
   insert(9);
   /*                     11               //Level 0
   *                      |
   *                  3---|---20           //Level 1
   *                  |        |
   *                  |--9 16--|--42       //Level 2
   *                     |         |
   *                  4--|     32--|--54   //Level 3
   */
   insert(4);
   /*                     11               //Level 0
   *                      |
   *                  3---|---20           //Level 1
   *                  |        |
   *                  |--9 16--|--42       //Level 2
   *                     |         |
   *                  4--|--10 32--|--54   //Level 3
   */
   insert(10);
   struct node * temp = search(32);
   if(temp!=NULL){
      printf("Element found.\n");
      printf("( %d )",temp->data);
      printf("\n");
   } else {
      printf("Element not found.\n");
   }
   struct node *node1 = search(2);
   if(node1!=NULL){
      printf("Element found.\n");
      printf("( %d )",node1->data);
      printf("\n");
   } else {
      printf("Element not found.\n");
   }        
   //pre-order traversal
   //root, left ,right
   traverse(1);
   //in-order traversal
   //left, root ,right
   traverse(2);
   //post order traversal
   //left, right, root
   traverse(3);       
}
输出
如果我们编译并运行上面的程序,那么它将产生以下输出 -
Visiting elements: 11 20 42 Element found.(32) Visiting elements: 11 3 Element not found. Preorder traversal: 11 3 9 4 10 20 16 42 32 54 Inorder traversal: 3 4 9 10 11 16 20 32 42 54 Postorder traversal: 4 10 9 3 16 32 54 42 20 11