 
- DSA 使用 C 教程
- 使用 C 的 DSA - 主页
- 使用 C 语言的 DSA - 概述
- 使用 C 语言的 DSA - 环境
- 使用 C 算法的 DSA
- 使用 C 的 DSA - 概念
- 使用 C 数组的 DSA
- 使用 C 链表的 DSA
- 使用 C 的 DSA - 双向链表
- 使用 C 的 DSA - 循环链表
- 使用 C 的 DSA - 堆栈内存溢出
- 使用 C 的 DSA - 解析表达式
- 使用 C 队列的 DSA
- 使用 C 的 DSA - 优先级队列
- 使用 C 树的 DSA
- 使用 C 哈希表的 DSA
- 使用 C 堆的 DSA
- 使用 C - Graph 的 DSA
- 使用 C 搜索技术的 DSA
- 使用 C 排序技术的 DSA
- 使用 C 的 DSA - 递归
- 使用 C 语言的 DSA 有用资源
- 使用 C 的 DSA - 快速指南
- 使用 C 的 DSA - 有用资源
- 使用 C 的 DSA - 讨论
使用 C 链表的 DSA
概述
链接列表是包含项目的链接序列。每个链接都包含到另一个链接的连接。链表是继数组之后第二常用的数据结构。以下是理解链表概念的重要术语。
- 链接- 链表的每个链接都可以存储称为元素的数据。 
- Next - 链接列表的每个链接都包含一个指向下一个链接的链接,称为“Next”。 
- LinkedList - LinkedList 包含指向名为 First 的第一个链接的连接链接。 
链表表示
 
 
根据上图所示,以下是需要考虑的要点。
- LinkedList 包含一个名为first 的链接元素。 
- 每个链接携带一个数据字段和一个接下来调用的链接字段。 
- 每个链接都使用其下一个链接与其下一个链接进行链接。 
- Last Link 带有一个为 null 的 Link 来标记列表的结尾。 
链表的类型
以下是链表的各种风格。
- 简单链接列表- 项目导航仅向前。 
- 双向链表- 项目可以向前和向后导航。 
- 循环链表- 最后一项包含第一个元素作为下一个元素的链接,第一个元素包含到最后一个元素作为上一个元素的链接。 
基本操作
以下是列表支持的基本操作。
- 插入- 在列表的开头添加一个元素。 
- 删除- 删除列表开头的元素。 
- 显示- 显示完整列表。 
- 搜索- 使用给定键搜索元素。 
- 删除- 使用给定键删除元素。 
插入操作
插入是一个三步过程 -
- 使用提供的数据创建新链接。 
- 将新链接指向旧的第一个链接。 
- 将第一个链接指向此新链接。 
 
//insert link at the first location
void insertFirst(int key, int data){
   //create a link
   struct node *link = (struct node*) malloc(sizeof(struct node));
   link->key = key;
   link->data = data;
   
   //point it to old first node
   link->next = head;
   
   //point first to new first node
   head = link;
}
删除操作
删除是一个两步过程 -
- 获取第一个链接指向的链接作为临时链接。 
- 将第一个链接指向临时链接的下一个链接。 
 
//delete first item
struct node* deleteFirst(){
   //save reference to first link
   struct node *tempLink = head;
   
   //mark next to first link as first 
   head = head->next;
   
   //return the deleted link
   return tempLink;
}
导航操作
导航是一个递归步骤过程,是搜索、删除等许多操作的基础。 -
- 获取第一个链接指向的链接作为当前链接。 
- 检查当前链接是否不为空并显示它。 
- 将当前链接指向当前链接的下一个链接并移至上述步骤。 
 
注意 -
//display the list
void printList(){
   struct node *ptr = head;
   printf("\n[ ");
   
   //start from the beginning
   while(ptr != NULL){        
      printf("(%d,%d) ",ptr->key,ptr->data);
      ptr = ptr->next;
   }
   printf(" ]");
}
高级操作
以下是为列表指定的高级操作。
- 排序- 根据特定顺序对列表进行排序。 
- 反转- 反转链表。 
排序操作
我们使用冒泡排序来对列表进行排序。
void sort(){
   int i, j, k, tempKey, tempData ;
   struct node *current;
   struct node *next;
   int size = length();
   k = size ;
   for ( i = 0 ; i < size - 1 ; i++, k-- ) {
      current = head ;
      next = head->next ;
      for ( j = 1 ; j < k ; j++ ) {            
         if ( current->data > next->data ) {
            tempData = current->data ;
            current->data = next->data;
            next->data = tempData ;
            tempKey = current->key;
            current->key = next->key;
            next->key = tempKey;
         }
         current = current->next;
         next = next->next;                        
      }
   }
}
反向操作
以下代码演示了反转单个链表。
void reverse(struct node** head_ref) {
   struct node* prev   = NULL;
   struct node* current = *head_ref;
   struct node* next;
   while (current != NULL) {
      next  = current->next;  
      current->next = prev;   
      prev = current;
      current = next;
   }
   *head_ref = prev;
}
例子
LinkedListDemo.c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
struct node {
   int data;
   int key;
   struct node *next;
};
struct node *head = NULL;
struct node *current = NULL;
//display the list
void printList(){
   struct node *ptr = head;
   printf("\n[ ");
   
   //start from the beginning
   while(ptr != NULL){        
      printf("(%d,%d) ",ptr->key,ptr->data);
      ptr = ptr->next;
   }
   printf(" ]");
}
//insert link at the first location
void insertFirst(int key, int data){
   //create a link
   struct node *link = (struct node*) malloc(sizeof(struct node));
   link->key = key;
   link->data = data;
   
   //point it to old first node
   link->next = head;
   
   //point first to new first node
   head = link;
}
//delete first item
struct node* deleteFirst(){
   //save reference to first link
   struct node *tempLink = head;
   
   //mark next to first link as first 
   head = head->next;
   
   //return the deleted link
   return tempLink;
}
//is list empty
bool isEmpty(){
   return head == NULL;
}
int length(){
   int length = 0;
   struct node *current;
   for(current = head; current!=NULL;
      current = current->next){
      length++;
   }
   return length;
}
//find a link with given key
struct node* find(int key){
   //start from the first link
   struct node* current = head;
   //if list is empty
   if(head == NULL){
      return NULL;
   }
   //navigate through list
   while(current->key != key){
      //if it is last node
      if(current->next == NULL){
         return NULL;
      } else {
         //go to next link
         current = current->next;
      }
   }
   //if data found, return the current Link
   return current;
}
//delete a link with given key
struct node* delete(int key){
   //start from the first link
   struct node* current = head;
   struct node* previous = NULL;
   
   //if list is empty
   if(head == NULL){
      return NULL;
   }
   //navigate through list
   while(current->key != key){
      //if it is last node
      if(current->next == NULL){
         return NULL;
      } else {
         //store reference to current link
         previous = current;
         
         //move to next link
         current = current->next;             
      }
   }
   //found a match, update the link
   if(current == head) {
      //change first to point to next link
      head = head->next;
   } else {
      //bypass the current link
      previous->next = current->next;
   }
   return current;
}
void sort(){
   int i, j, k, tempKey, tempData ;
   struct node *current;
   struct node *next;
   int size = length();
   k = size ;
   for ( i = 0 ; i < size - 1 ; i++, k-- ) {
      current = head ;
      next = head->next ;
      for ( j = 1 ; j < k ; j++ ) {            
         if ( current->data > next->data ) {
            tempData = current->data ;
            current->data = next->data;
            next->data = tempData ;
            tempKey = current->key;
            current->key = next->key;
            next->key = tempKey;
         }
         current = current->next;
         next = next->next;                        
      }
   }
}
void reverse(struct node** head_ref) {
   struct node* prev   = NULL;
   struct node* current = *head_ref;
   struct node* next;
   while (current != NULL) {
      next  = current->next;  
      current->next = prev;   
      prev = current;
      current = next;
   }
   *head_ref = prev;
}
main() {
   insertFirst(1,10);
   insertFirst(2,20);
   insertFirst(3,30);
   insertFirst(4,1);
   insertFirst(5,40);
   insertFirst(6,56); 
   printf("Original List: "); 
   //print list
   printList();
   while(!isEmpty()){            
      struct node *temp = deleteFirst();
      printf("\nDeleted value:");  
      printf("(%d,%d) ",temp->key,temp->data);        
   }         
   printf("\nList after deleting all items: ");          
   printList();
   insertFirst(1,10);
   insertFirst(2,20);
   insertFirst(3,30);
   insertFirst(4,1);
   insertFirst(5,40);
   insertFirst(6,56); 
   printf("\nRestored List: ");  
   printList();
   printf("\n");  
   struct node *foundLink = find(4);
   if(foundLink != NULL){
      printf("Element found: ");  
      printf("(%d,%d) ",foundLink->key,foundLink->data);  
      printf("\n");  
   } else {
      printf("Element not found.");  
   }
   delete(4);
   printf("List after deleting an item: ");  
   printList();
   printf("\n");
   foundLink = find(4);
   if(foundLink != NULL){
      printf("Element found: ");  
      printf("(%d,%d) ",foundLink->key,foundLink->data);  
      printf("\n");  
   } else {
      printf("Element not found.");  
   }
   printf("\n");  
   sort();
   printf("List after sorting the data: ");  
   printList();
   reverse(&head);
   printf("\nList after reversing the data: ");  
   printList();
}
输出
如果我们编译并运行上面的程序,那么它将产生以下输出 -
Original List: [ (6,56) (5,40) (4,1) (3,30) (2,20) (1,10) ] Deleted value:(6,56) Deleted value:(5,40) Deleted value:(4,1) Deleted value:(3,30) Deleted value:(2,20) Deleted value:(1,10) List after deleting all items: [ ] Restored List: [ (6,56) (5,40) (4,1) (3,30) (2,20) (1,10) ] Element found: (4,1) List after deleting an item: [ (6,56) (5,40) (3,30) (2,20) (1,10) ] Element not found. List after sorting the data: [ (1,10) (2,20) (3,30) (5,40) (6,56) ] List after reversing the data: [ (6,56) (5,40) (3,30) (2,20) (1,10) ]