- DSA 使用 Java 教程
- 使用 Java 的 DSA - 主页
- 使用 Java 的 DSA - 概述
- 使用 Java 的 DSA - 环境设置
- 使用 Java 的 DSA - 算法
- 使用 Java 的 DSA - 数据结构
- 使用 Java 的 DSA - 数组
- 使用 Java 的 DSA - 链表
- 使用 Java 的 DSA - 双向链表
- 使用 Java 的 DSA - 循环链表
- 使用Java的DSA - 堆栈内存溢出
- DSA - 解析表达式
- 使用 Java 的 DSA - 队列
- 使用 Java 的 DSA - 优先级队列
- 使用 Java 的 DSA - 树
- 使用 Java 的 DSA - 哈希表
- 使用 Java 的 DSA - 堆
- 使用 Java 的 DSA - 图
- 使用 Java 的 DSA - 搜索技术
- 使用 Java 的 DSA - 排序技术
- 使用 Java 的 DSA - 递归
- 使用 Java 的 DSA 有用资源
- 使用 Java 的 DSA - 快速指南
- 使用 Java 的 DSA - 有用资源
- 使用 Java 的 DSA - 讨论
使用 Java 的 DSA - 队列
概述
队列是一种类似于堆栈的数据结构,主要区别在于插入的第一个项目是要删除的第一个项目(FIFO - 先进先出),其中堆栈基于 LIFO(后进先出)原理。
队列表示
基本操作
insert / enqueue - 将一个项目添加到队列的末尾。
删除/出队- 从队列前面删除一个项目。
在本文中,我们将使用数组来实现队列。下面还有一些队列支持的操作。
Peek - 获取队列前面的元素。
isFull - 检查队列是否已满。
isEmpty - 检查队列是否为空。
插入/入队操作
每当一个元素插入到队列中时,队列都会增加后索引以供以后使用,并将该元素存储在存储的后端。如果后端到达最后一个索引并且它被包裹到底部位置。这种排列称为环绕,这种队列是循环队列。该方法也称为入队操作。
public void insert(int data){
if(!isFull()){
if(rear == MAX-1){
rear = -1;
}
intArray[++rear] = data;
itemCount++;
}
}
删除/出队操作
每当要从队列中删除元素时,队列都会使用前索引获取该元素并递增前索引。作为环绕安排,如果前面的索引大于数组的最大索引,则将其设置为 0。
public int remove(){
int data = intArray[front++];
if(front == MAX){
front = 0;
}
itemCount--;
return data;
}
队列实现
队列.java
package com.tutorialspoint.datastructure;
public class Queue {
private final int MAX;
private int[] intArray;
private int front;
private int rear;
private int itemCount;
public Queue(int size){
MAX = size;
intArray = new int[MAX];
front = 0;
rear = -1;
itemCount = 0;
}
public void insert(int data){
if(!isFull()){
if(rear == MAX-1){
rear = -1;
}
intArray[++rear] = data;
itemCount++;
}
}
public int remove(){
int data = intArray[front++];
if(front == MAX){
front = 0;
}
itemCount--;
return data;
}
public int peek(){
return intArray[front];
}
public boolean isEmpty(){
return itemCount == 0;
}
public boolean isFull(){
return itemCount == MAX;
}
public int size(){
return itemCount;
}
}
演示程序
QueueDemo.java
package com.tutorialspoint.datastructure;
public class QueueDemo {
public static void main(String[] args){
Queue queue = new Queue(6);
//insert 5 items
queue.insert(3);
queue.insert(5);
queue.insert(9);
queue.insert(1);
queue.insert(12);
// front : 0
// rear : 4
// ------------------
// index : 0 1 2 3 4
// ------------------
// queue : 3 5 9 1 12
queue.insert(15);
// front : 0
// rear : 5
// ---------------------
// index : 0 1 2 3 4 5
// ---------------------
// queue : 3 5 9 1 12 15
if(queue.isFull()){
System.out.println("Queue is full!");
}
//remove one item
int num = queue.remove();
System.out.println("Element removed: "+num);
// front : 1
// rear : 5
// -------------------
// index : 1 2 3 4 5
// -------------------
// queue : 5 9 1 12 15
//insert more items
queue.insert(16);
// front : 1
// rear : -1
// ----------------------
// index : 0 1 2 3 4 5
// ----------------------
// queue : 16 5 9 1 12 15
//As queue is full, elements will not be inserted.
queue.insert(17);
queue.insert(18);
// ----------------------
// index : 0 1 2 3 4 5
// ----------------------
// queue : 16 5 9 1 12 15
System.out.println("Element at front: "+queue.peek());
System.out.println("----------------------");
System.out.println("index : 5 4 3 2 1 0");
System.out.println("----------------------");
System.out.print("Queue: ");
while(!queue.isEmpty()){
int n = queue.remove();
System.out.print(n +" ");
}
}
}
如果我们编译并运行上面的程序,那么它将产生以下结果 -
Queue is full! Element removed: 3 Element at front: 5 ---------------------- index : 5 4 3 2 1 0 ---------------------- Queue: 5 9 1 12 15 16